QUADRATIC DIRICHLET CHARACTERS

ZEÉV RUDNICK

Let q be odd prime , and let $m \in \mathbb{F}_q[T]$ be a polynomial of positive degree. We define

$$\chi_m(f) := \left(\frac{m}{f}\right)_2$$

Proposition 1. Assume that m is monic, and deg m is even. Then χ_m is a Dirichlet character modulo m.

Proof. Mutiplicativity is clear from properties of the Jacobi symbol. What needs checking is that $\chi_m(f + mg) = \chi_m(f)$.

We use quadratic reciprocity (for the Jacobi symbol): If gcd(f, m) = 1, then

$$\chi_m(f) = \left(\frac{m}{f}\right)_2 = \left(\frac{f}{m}\right)_2 (-1)^{\frac{q-1}{2}\deg m \deg f} \operatorname{sign}_2(f)^{\deg m} \operatorname{sign}_2(m)^{-\deg f}$$

where

 $\operatorname{sign}_2(f) = (\text{Leading coefficient of } f)^{(q-1)/2}$

For monic m, we have $\operatorname{sign}_2(m) = 1$. If deg m is even, then $\operatorname{sign}_2(f)^{\deg m} = (f_{\text{leading}})^{\frac{q-1}{2} \deg m} = 1$, and $(-1)^{\frac{q-1}{2} \deg m \deg f} = 1$. Thus in our case

(1)
$$\chi_m(f) = \left(\frac{f}{m}\right)_2$$

which depends only on $f \mod m$.

Thus we have found several examples of real characters.

Definition 2. A Dirichlet character χ is "even" if $\chi(cf) = \chi(f)$ for all scalars $c \in \mathbb{F}_q^{\times}$. Equivalently, if $\chi(c) = 1 \ \forall c \in \mathbb{F}_q^{\times}$.

We claim that χ_m is an "even" character, that is $\chi_m(cf) = \chi_m(f)$, for $c \in \mathbb{F}_q^{\times}$. Indeed, using (1), $\chi_m(c) = \left(\frac{c}{m}\right)_2$ so that

$$\chi_m(c) = \left(\frac{c}{m}\right)_2 = c^{(|m|-1)/2}$$

by general properties of the Legendre symbol. But if deg $m = 2\mu$ is even, then

$$\frac{|m|-1}{2} = \frac{q^{\deg m}-1}{2} = (q^{\mu}-1)\frac{q^{\mu}+1}{2} = (q-1)(1+q+\dots+q^{\mu-1})\frac{q^{\mu}+1}{2}$$

is an integer multiple of q-1, and hence $c^{(|m|-1)/2} = (c^{q-1})^* = 1$ in \mathbb{F}_q . Thus $\chi_m(c) = 1$.

Date: December 2017.

Proposition 3. For even Dirichlet characters $\chi \mod Q$, $L(0,\chi) = 0$. In particular we can write

$$L(s,\chi) = (1 - q^{-s})P(q^{-s})$$

where P(u) is a polynomial of degree $\leq \deg Q - 2$, with P(0) = 1.

Proof. We recall that for any nontrivial character $\chi \mod Q$, we saw ("the analytic continuation") that

$$L(s,\chi) = \sum_{\substack{0 \le n \le \deg Q - 1 \\ \text{monic}}} \left(\sum_{\substack{\deg f = n \\ \text{monic}}} \chi(f)\right) q^{-ns}$$

and therefore

$$L(0,\chi) = \sum_{\substack{\deg f \leq \deg Q - 1 \\ \text{monic}}} \chi(f)$$

Since χ is even, we have for all f,

$$\chi(f) = \frac{1}{q-1} \sum_{c \in \mathbb{F}_q^{\times}} \chi(cf)$$

and as f goes over all monic polynomials of given degree, the set $\{cf : c \in \mathbb{F}_q^{\times}\}$ will go over all polynomials of that degree (not necessarily monic). Thus

$$L(0,\chi) = \frac{1}{q-1} \sum_{\deg f \le \deg Q-1} \chi(f)$$

the sum now over all polynomials of degree strictly less than deg Q. But this set is precisely all representatives of the residue classes modulo Q. This

$$L(0,\chi) = \frac{1}{q-1} \sum_{f \bmod Q} \chi(f)$$

By the orthogonality relations, this sum vanishes if $\chi \neq \chi_0$ is a nontrivial character.

Now $L(s, \chi) = \operatorname{Pol}(q^{-s})$ is a polynomial in $u = q^{-s}$, with $\operatorname{Pol}(u) = 1 + u + \dots + u^{\deg Q-1}$. Since $\operatorname{Pol}(1) = 0$ (evaluate at $q^{-0} = 1$) we have by general properties of polynomials that $\operatorname{Pol}(u) = (1 - u)P(u)$ for some other polynomial, of degree one less. And since $\operatorname{Pol}(0) = 1$ we also need P(0) = 1.

Corollary 4. If deg m = 2, m monic then

$$L(s,\chi_m) = 1 - q^{-s}$$

Proof. Since χ_m is an even Dirichlet character, and deg m = 2, we use Proposition 3 to deduce that $L(s, \chi_m) = (1 - q^{-s})P(q^{-s})$ and now P(u) has degree deg m - 2 = 0 so is a scalar, and P(0) = 1 so $P(u) \equiv 1$.

RAYMOND AND BEVERLY SACKLER SCHOOL OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, TEL AVIV 69978, ISRAEL

E-mail address: rudnick@post.tau.ac.il